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FUNDAMENTAL PRINCIPLES IN THE BUCKLING
OF STRUCTURES UNDER COMBINED LOADING
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Abstract-The basic concepts of the general theory of elastic stability are developed with reference to combined
loading, only discrete conservative structural systems being considered.

It is observed that the two well known critical points, the limit and bifurcation points, are not quite adequate
to describe the buckling behaviour of structures under combined loading. A more appropriate classification
which describes the nature of buckling more aptly is given, Thus, in the elastic stability of structures under com­
bined loading, mainly two types of critical point are involved, the "general" and "special" critical points. The
conditions giving rise to these two distinct phenomena and their relation to the limit and bifurcation points are
examined in detail. The connexion between the shape of the equilibrium surface and the nature of buckling is
demonstrated analytically,

1. INTRODUCTION

THE foundations of the general theory of elastic stability were laid by Poincare [IJ in his
classical paper on the stability of rotating liquid masses, Using the concept of generalized
coordinates, he showed that a loss of stability is normally associated with either a limit
point at which an initially stable equilibrium path reaches a local extremum or with a
point of bifurcation at which the path intersects a second and distinct equilibrium path,
The significance of these two critical conditions in the subject of elastic stability is clear,
and both conditions have later been examined by a few authors in great detail.

Koiter [2,3J, working in the context of continuum mechanics focused his attention
on the branching configurations, while Lyttleton [4J and Thompson [5J discussed more
general critical configurations associated with a limit point as well as a bifurcation point
in terms of generalized coordinates. The latter author demonstrated the essential inter­
relationship between the two distinct phenomena analytically. His results show that limit
points are-mathematically-more general and arise when a single stability coefficient
vanishes, while the bifurcation points arise when a stability coefficient and a second
energy coefficient vanish simultaneously.

The structural systems considered by these authors involve a single variable loading
parameter which is assumed to describe the external loading of the structure entirely.
In the presence of more than one independent loading parameter, however, the situation is
not quite the same due to the involvement of an equilibrium surface which is defined [6, 7J
in the load-deflection space as the entirety of the equilibrium points, It is observed [6J
that, depending on the shape of the equilibrium surface, a limit point can, under some
circumstances, also be regarded as a point of bifurcation. This is an interesting result
which might lead to confusion as to the type of the critical point and the nature of buckling.
In addition, the basic properties of the stability boundary, which comes into picture in
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connection with the equilibrium surface (which is defined [6] in the loading-space as the
entirety of the critical points associated with an initial loss of stability), depend on the type
of the critical point. It is, therefore, felt that a careful study of the fundamental aspects
of the buckling behaviour of structures under combined loading is essential. In the present
paper this is done in terms of generalized coordinates, and a reclassification of the critical
points together with the conditions giving rise to these points is presented.

Only conservative elastic systems are considered.

2. THE STRUCTURAL SYSTEM

We consider a conservative elastic structural system characterized by a total potential
energy function

(1)

(2)

which is assumed to be single-valued and well-behaved at least in the region of interest.
The Qi(i = 1,2, ... , N) are the generalized coordinates, and we assume that a given set
of the Qi defines completely the configuration of the system. The independent loading
parameters Ai(j = 1, 2, ... , M) might represent generalized forces, the magnitudes of the
external loads and even imperfections.

The necessary and sufficient condition of equilibrium, that the first variation of the
potential energy with respect to the Qi should vanish, yields a set of N equilibrium equations

aV(Q;, Ai) = 0

aQk

which define an M-dimensional equilibrium surface in the M +N dimensional load­
deflection space.

To analyse an element of such a surface, we can expand the total potential energy
function (1) as a Taylor series about an equilibrium state of interest. Suppose the equations
(2) are solved simultaneously to yield solutions in the form

i = 1, ... ,N; j = 1, ... ,M. (3)

Consider an arbitrarily chosen point F on the surface representing a state of equilibrium
Qf(A~) which will be called fundamental. Using qi and Ai to denote increments in the
variables Qi and Ai respectively, we shall refer the potential energy of the system to the
fundamental state by writing it in the form

V = V[Qf +qi, A~+Ai]. (4)

We further introduce a linear, non-singular and orthogonal transformation
N

qi = L: cxijUj,
j=!

(5)

to diagonolize the quadratic form (in qi) of the energy expansion around the fundamental
state. By insisting that the transformation matrix [cxij] should be orthogonal we, in general,
ensure a unique point transformation which changes the coordinate axes from the qi to
the Ui, the latter being orthogonal through the origin of the N-dimensional qi coordinate
system [i.e. through the point F (see Fig. 1)].
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FIG. I.

(7)

Introducing the transformation (5) into the equation (4) we get a new energy function

H(uj, JJ) == V[Qf +Cl.ijuj, A} + A.k ]. (6)

Using the Taylor's expansion and remembering that the fundamental state is one of
equilibrium we get

H = H +HiA.i+~(H"Uf+2mu.A.j+HijA.iA.j)o 2! II I I I

1 1
+ 4!(.. ···· .)+ 5!(······ .)+ ...

Here and in the remainder of this paper the summation convention is adopted both for
the subscripts and superscripts separately so that summations are taken over repeated
superscripts from 1 to M and over repeated subscripts from 1 to N. It is also understood
that the upper and lower indices on the H coefficients denote partial differentiation with
respect to the corresponding loading parameter and generalized coordinate respectively,
all derivatives being evaluated at the fundamental state of equilibrium F.

3. EQUILmRIUM SURFACE

We are now in a position to investigate the shape of the equilibrium surface in the
vicinity of the fundamental state F. In general, all the coefficients are finite and non-zero
in which case the N equilibrium equations OH/OUi yield to a first approximation

(8)

These equations determine an M-dimensional plane in the M +N dimensional load­
deflection space and indicate a one-to-one correspondence between a set of loading
parameters and a set of generalized coordinates. This is the most general behaviour
associated with the equilibrium of the system.
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For the stability ofan equilibrium state a sufficient condition is that the potential energy
has a complete relative minimum at that point. It immediately follows that the positive
definiteness of the quadratic form of the energy is a sufficient condition of stability. If the
quadratic form admits negative values the associated equilibrium state is unstable. If
the quadratic form admits zero values, then, the system is said to be in a critical (or neutral)
state of equilibrium. Since the quadratic form in qj has already been diagonolized by the
linear transformation (5), at least one of the Poincare's stability coefficients Hdi = 1" .. , N)
should vanish if the fundamental state is critical. Ifwe suppose that the stability coefficients
are arranged in the descending order

H 11 :;s; H 22 :;s; ... :;s; HNN :

we can, then, discuss the stability of the equilibrium state simply by referring to H 11

only. Thus, for H 11 > 0 the state is stable while for H 11 < 0 the state is unstable. H 11 = 0
is the only critical case in which the stability of the state cannot be determined and higher
order variations of energy are required.

After this brief general discussion of stability of a certain equilibrium state we can now
return to our analysis and suppose that the fundamental state F is moved on the equilibrium
surface until it coincides with a discrete critical point where, say H 11 = 0 and Hss :f 0
(s :f 1). It is understood that the above arrangement of H ii in the descending order was
introduced merely to facilitate the discussion of stability of a certain equilibrium state,
and is not meant to be valid here and in the following analyses. Now, the most important
factor which appears to determine the shape of the equilibrium surface and the type of
buckling is grad;. H 1(0,0). Two interesting cases arise and we shall study them separately:

(a) The case in which grad;. H 1(0, 0) :f O.
This implies that at least one of the coefficients H~(O, 0) in the energy expansion (7)

does not vanish. We shall call the critical point "general" if this condition is satisfied, and
if, in addition, the non-vanishing stability coefficients (Hss) are all positive it will be called
"general primary".

Supposing, for now, that all the coefficients are non-zero, the equilibrium equations
can be written down in the form

(9)

(10)

and

eH .. 1 2- = Hssus+H~A.·+,!Hs11U1 +... = 0aus

which define an M-dimensional equilibrium surface in the M + N dimensional load­
deflection space. Substituting for Us in the equation (9) and keeping to a first approximation
we get

and substituting for Ul in the equation (10) we have

H + (H
i _ H~H'l1) 'i = 0ssUs s H II. .

111

(11)

~12)
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Equations (11) and (12) can be regarded as th~ projections of the equilibrium surface
into the Ul - Ai and Us-- Ai subspaces respectively, the former representing a curved surface
and the latter a plane. In other words the critical coordinate Ul ceases to be single-valued
while the non-critical coordinates, similar to the case of a non-critical equilibrium point,
remain as linear functions of the loading parameters. These projections are shown sche­
matically in Figs. 2 and 3.

_~:::--~= U,

F - ............

FIG. 2.

---*---.us
F

/

FIG. 3.

It is interesting to note that the equations (11) and (12) are similar to those obtained
by Thompson [5] for a limit point who used a single loading parameter, the only difference
being the summation on the loading parameters. In fact one can readily derive Thompson's
results on the basis of these equations by assuming that the Ai(i = 1,·" M) are functions
of a single variable parameter ~. Expanding the functions Ai(~) around the point F where
Ai = ~ = 0 we get

(13)

in which Ii, ki, ... are constants.
Substituting for the Ai in the equation (11), the first order result can be written as

H~/i~+tHIIIUi = 0 (14)

in which the summation H~/i is immediately recognized as Hi( == aHda~) evaluated at
Ui = Ai = ~ = 0 giving finally

(15)
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which is, indeed, the relationship obtained by Thompson for a limit point. Similarly the
equation (12) can also be converted to Thompson's corresponding expression.

An important distinction between the systems with a single loading parameter and
those with several parameters can now be drawn. Thus, in contrast to the situation con­
sidered by Thompson, the non-vanishing energy coefficients (HD do not here ensure a
limit point since the summation Hill i might vanish depending on the Ii (i.e. on the loading)
in which case the equilibrium equations must be reconsidered and additional terms
retained. If this is done we obtain to a first approximation

(16)

and

where a and b are constants and given by

( . H~).. .a = HIlI -H IIs - II == ell'
Hss

(

i j j)
b = Hii+H HsHr -2Hi H s [i[j+2Hi ki

I Isr H H Is H I
S5 rr 55

The equation (16) can be solved for UI to yield

UI = _1_[ -a±(a2 -H IlIb)-tJe
H lIl

which indicates bifurcation on a plot of UI against e(Fig. 4) provided

a 2 -HlIlb > O.

(17)

(18)

(19)

(20)

This phenomenon can be seen in another way. Suppose some of the coefficients H~

vanish (say HI
I = 0 where t takes values from 1 to M I, M I < M), then, the equilibrium

equations can be written as

(21 )

and

(22)

,
F' ....

FIG. 4.
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(24)

where s # 1, t and p range from 1 to M l' X ranges from M 1 +1 to M (i.e. x # t, x # p),
and summation is carried out on repeated subscripts and superscripts over admissible
ranges.

Substituting for Us in the equation (21) and keeping to a first approximation we get

H1A,X+-!H 1 uUI +C
l u1..1.1+ tfPA,IAP = 0, (23)

and substituting for Ul in the equation (22) we have

(
HXH)H + HX_ 1 s11 ?.X+HI 11 = 0

ssUs s H sl\.
111

where s # 1, x # t, x # p and the coefficients d and tfP are given by the equations (18)
(Note that the summation range is now from 1 to M1, M1 < M).

We now see clearly that bifurcation is not ruled out In fact, if we take a ray determined
by

(25)

where [' are the direction cosines and ~ the radius vector, the equilibrium equation (23)
yields

tH111ul+CUl~+tD~2 = 0 (26)

in which C = clll and D = tfP[![P. Solution of (26) for U1 indicates bifurcation as illustrated
in Fig. 4 provided C2 -H I11 D > O.

On the other hand, suppose we take a general ray in the sense that all the Ii # 0 (or
at least some of IX # 0); the equation (23) will then yield

(27)

provided HW # 0, indicating a limit point (Fig. 5). In the event that H'W 0 we return
to the case considered before and find that bifurcation instead of a limit point is involved.

It is thus demonstrated analytically that a "general" critical point can be considered
both as a limit and bifurcation point depending on the mode of loading.

We shall now examine the second case,

--(b) The case in which grad,\ H 1(0,0) = 0

This condition implies that all the coefficients Hi (i = 1, ... , M) vanish at the funda­
mental state which was chosen as a discrete critical point where H 11 = 0 and all H ss # 0
for s # 1. This is of course a special critical state compared to the more general case (a~

FIG. 5.
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and it will be called "special". Assuming further that all the other energy coefficients are
non-zero, the first order solution of the equilibrium equations yield

and
(28)

(29)

where ci and dij are defined by the equations (18)..Let us take an arbitrary ray determined
by Ai = li~ where some Ii i' O. Substituting for the Ai in the equation (28) and solving for
U I we get

I [ 2 t v
U I = -H. -C±(C -HIIID) k

III
(30)

where C = ciii and D = dijiii j
. We see that the solution involves a point of bifurcation

provided C2
- H 111D > O. We also note that limit points are now definitely ruled out.

i.e. There exist no rays with respect to which the critical point F can be regarded as a limit
point. Thus, the conditions which ensure bifurcation buckling and exclude the possibility
of snap-buckling are supplied by the vanishing of g;aa, H1(0,0) together with
C2 -H I11D > 0.

It can readily be shown that the particular case in which all the coefficients
H1(i = 1, ... , N;j = 1, ... , M) vanish is also associated with a "special" critical point at
which snap-buckling is excluded.

4. CONCLUSIONS

It is shown that the loss of stability of a structural system with independent loading
parameters can be associated with either a "general" or a "special" critical point. The
former arises when the gradient of oH/oul with respect to the loading parameters is not
zero and the projection of the equilibrium surface in the ul-Ai subspace is, then, con­
tinuous. The latter arises when this gradient vanishes in which case the intersection of two
surfaces is involved.

Although a "general" critical point is normally associated with a limit point, it is
demonstrated analytically that, under some conditions, bifurcation of solution can also
occur at the same point. A "special" critical point, on the other hand, is a genuine bi­
furcation point at which a simple extremum is definitely ruled out.

In demonstrating the connexion between the shape of the equilibrium surface and the
nature of buckling, the analysis is facilitated by the use of certain rays in the form Ai = li(.
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A6CTpaKT-)l,aJOTClI OCHOBHble KOHI.\em.IlHl o6111ell TeopHIf yrrpyroll YCTOH'IHBOCTIf rro OTHOllleHHIO K
KOM6lfHHpoBaHHoll Harpy3Ke, rrpH'IeM paCCMaTpHBalOTClI TOJIbKO LlIiCKpeTHble KOHcepBaTIiBHble CIiCTeMbI
KOHcTpYKI.\lill.

Ha6JIIOLlaeTClI, 'iTO XopOWO 1i3BeCTHble KpIiTIi'leCKlie TO'lKH, T.e. TO'lKa rrpeLleJia H 6H<!>YPKaI.\Hli, He
rrplirOLlHbl LlJIlI orrlicaHlfll rrOBeLleHHlI rrOTepH YCTOH'IHBOCTIi KOHCTpYKI.\lfll rrOA BJilillHHeM KOM6HHHpOBaH­
Holl Harpy3KIi. nplfBOLlIfTClI 60JIee rrOLlXOLllllllall KJIaCCIi<!>HKaI.\HlI, 60JIee rrOJIHO orrliCbIBalOlllall: rrplipOLlY
BblIIy'lHBaHlill. PaCCMaTpIiBaIOTClI, B 06JIaCTH YCTOH'IIiBOCTIi yrrpyrlix CHCTeM rrOA BJIHlIHHeM KOM6IiHIiPO­
BaHHoll Harpy3KM, rJIaBHblM 06pa30M LlBa THrra KpHTH'IeCKHX TO'leK-"o6111all:" H "CrreI.\HaJIbHall" TO'lKH.
JilcCJIeLlyeTclI, LleTaJIbHO, yCJIOBHlI, KOTopble rrpHBOLlllT K 3THM LlByM OTLleJIbHblM lI:BJIeHHlIM H HX 3aBHCHMOCTb
OT TO'leK rrpeLleJia H 6H<!>YPKaI.\HH. npeLlCTaBJIlIeTClI, aHaJIHTH'IeCKH, 3aBHCHMOCTb MelKAY <!>OPMOH rrOBepx­
HOCTH paBHOBeCHlI H rrpHpOLloll rrOTepH yCTOll'lHBOCTH.


